skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hauber, Mark_E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Many animals breed colonially, often in dense clusters, representing a complex social environment with cognitive demands that could ultimately impact individual fitness. However, the effects of social breeding on the evolution of cognitive processes remain largely unknown. We tested the hypothesis that facultative colonial breeding influences attention and decision-making. Barn swallows (Hirundo rustica) breed in solitary pairs or in a range of colony sizes, up to dozens of pairs. We tested for selective attention to social information with playbacks of conspecific alarm calls and for decision-making with simulated predator intrusions, across a range of colony sizes from 1 to 33 pairs. We also evaluated the adaptive value of both processes by measuring seasonal reproductive success. Swallows breeding in larger colonies were more selective in their attention to social information. Birds breeding in larger colonies were also less risk averse, deciding to return more quickly to their nests after a predator approach paradigm. Finally, birds that showed higher selective attention hatched more eggs and birds that returned to their nests more quickly after a predator intrusion had more nestlings. Although we cannot fully attribute these fitness outcomes to the cognitive measures considered in this study, our results suggest that social breeding plays a role in adaptively shaping both the acquisition of social information and decision-making. 
    more » « less
  2. Abstract Adaptive responses to ecological uncertainty may affect the dynamics of interspecific interactions and shape the course of evolution within symbioses. Obligate avian brood parasites provide a particularly tractable system for understanding how uncertainty, driven by environmental variability and symbiont phenology, influences the evolution of species interactions. Here, we use phylogenetically-informed analyses and a comprehensive dataset on the behaviour and geographic distribution of obligate avian brood parasites and their hosts to demonstrate that increasing uncertainty in thermoregulation and parental investment of parasitic young are positively associated with host richness and diversity. Our findings are consistent with the theoretical expectation that ecological risks and environmental unpredictability should favour the evolution of bet-hedging. Additionally, these highly consistent patterns highlight the important role that ecological uncertainty is likely to play in shaping the evolution of specialisation and generalism in complex interspecific relationships. 
    more » « less
  3. Abstract The role of species interactions, as well as genetic and environmental factors, all likely contribute to the composition and structure of the gut microbiome; however, disentangling these independent factors under field conditions represents a challenge for a functional understanding of gut microbial ecology. Avian brood parasites provide unique opportunities to investigate these questions, as brood parasitism results in parasite and host nestlings being raised in the same nest, by the same parents. Here we utilized obligate brood parasite brown‐headed cowbird nestlings (BHCO;Molothrus ater) raised by several different host passerine species to better understand, via 16S rRNA sequencing, the microbial ecology of brood parasitism. First, we compared faecal microbial communities of prothonotary warbler nestlings (PROW;Protonotaria citrea) that were either parasitized or non‐parasitized by BHCO and communities among BHCO nestlings from PROW nests. We found that parasitism by BHCO significantly altered both the community membership and community structure of the PROW nestling microbiota, perhaps due to the stressful nest environment generated by brood parasitism. In a second dataset, we compared faecal microbiotas from BHCO nestlings raised by six different host passerine species. Here, we found that the microbiota of BHCO nestlings was significantly influenced by the parental host species and the presence of an inter‐specific nestmate. Thus, early rearing environment is important in determining the microbiota of brood parasite nestlings and their companion nestlings. Future work may aim to understand the functional effects of this microbiota variability on nestling performance and fitness. 
    more » « less